human activity recognition using CNN and long term short term memory
نویسندگان
چکیده
Human activity recognition aims to work out the activities performed by someone in a picture or video. Examples of actions are running, sitting, sleeping, and standing. Complex movement patterns harmful occurrences like falling may be part these activities. The suggested ConvLSTM network can created successively combining fully connected layers, long immediate memory (LSTM) networks, convolutional neural networks (CNN). acquisition system will pre calculate skeleton coordinates using human detection pose estimation from image/video sequence. model builds new controlled features raw their distinctive geometric kinematic properties. Raw utilized generate properties supported relative joint position values, differences, angular velocities. By utilizing multi-player trained CNN-LSTM combination, novel spatiotemporal directed obtained. classification head with completely layers is then utilized. was tested KinectHAR dataset, which consists 130,000 samples 81 attribute variables compiled Kinect (v2) sensor Experimental data used compare performance independent CNN LSTM networks.
منابع مشابه
the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولLong Short-term Memory
Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...
متن کاملLong Short-Term Memory
Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, ...
متن کاملSpeech dereverberation using long short-term memory
Recently, neural networks have been used for not only phone recognition but also denoising and dereverberation. However, the conventional denoising deep autoencoder (DAE) based on the feed-forward structure is not capable of handling very long speech frames of reverberation. LSTM can be effectively trained to reduce the average error between the enhanced signal and the original clean signal by ...
متن کاملshort-term and long-term dependency modeling of consecutive range profiles for radar target recognition
high resolution range profile (hrrp) is being known as one of the most powerful tools for radar target recognition. the main problem with range profile for radar target recognition is its sensitivity to aspect angle. to overcome this problem, consecutive samples of hrrp (or feature vectors extracted from them)were assumed to be identically independently distributed (iid) in small frames of aspe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Health Sciences (IJHS)
سال: 2022
ISSN: ['2550-6978', '2550-696X']
DOI: https://doi.org/10.53730/ijhs.v6ns6.12919